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1 Introduction

It is well recognized that contingent claims written on the realization of an underlying uncertainty

(like the realized variance on the S&P500 index or the losses of a group of hedge funds) are priced

by evaluating discounted expectations of claim payouts under a risk neutral probability. This risk

neutral probability generally differs from its statistical counterpart. The statistical distribution

describes the likelihood of these risky outcomes and is typically estimated from historical time

series data on past realizations. The risk neutral probability, on the other hand, is the market

price of Arrow-Debreu securities associated with risky events. Often the risk neutral probability

can be inferred from options prices as described in Breeden and Litzenberger (1978). However,

options markets do not exist for a wide collection of underlying uncertainties. In contrast, there

is readily available historical time series data on past realizations. The question then arises as

to how one may construct the risk neutral density from the estimated statistical density for such

risks, to price contingent claims written on these uncertainties. We refer to such procedures as

risk neutralizing the statistical distribution.

The objective of this paper is to propose such a strategy. We obtain the risk neutral distribution

by exponentially tilting and renormalizing the statistical one. This approach is broadly consistent

with much of the current literature that incorporates risk aversion using either constant market

prices of risk (Heath, Jarrow and Morton (1992), Heston (1993)) or constant relative risk aversion

utility functions (Naik and Lee (1990)). Our specific contribution lies in showing how one may

obtain the coefficient of exponential tilting by putting together an analysis of the underlying risk

and information from selected traded options markets that relate to the underlying risk.

We show how tilt coefficients embedded in traded options prices can be used to price non-

traded risks. Hence, we derive an explicit tilt adjustment that relates the degree of exponential

tilting applicable to the statistical distribution of the underlying risk to the degree of exponential

tilt observed in the related options market. The resulting methodology is potentially widely
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applicable in pricing risks embedded in loan defaults, mortgage refinancing, electricity and weather

derivatives, and catastrophic losses to give a few examples. Common to the pricing of these risks

is the absence of a liquid options market and the presence of high quality statistical data.

We illustrate our approach in the context of pricing contracts written on deposit insurance

losses. Such an exercise is a natural experiment for our proposed approach, where we observe

a long history of statistical (historical) losses on bank failures enabling us to capture the statis-

tical distribution. In contrast, there do not exist any traded claims on these losses, hence, the

risk neutral distribution can not be directly obtained. However, we can observe the risk-neutral

distribution of claims traded on financial variables (e.g. a price index on bank stocks) useful in

predicting these losses. We show how options written on a bank index can be used to risk neutral-

ize the statistical distribution of annual losses faced by the Federal Deposit Insurance Corporation

(FDIC).

The specific contract we analyze is the excess of loss reinsurance contract, which represents a

portfolio of call options written on the aggregate loss level of an insurer. Effectively, the reinsurer

sells the insurer a call-spread where the reinsurer will have to cover losses above a strike level but

its commitment is capped by a stated coverage level. We obtain a closed form pricing expression

for the call-spread under the assumption that the underlying losses follow a Weibull distribution,

which is in the family of extreme-value distributions.

We estimate the statistical distribution of the FDIC’s losses on bank failures, in the two-

parameter Weibull family for annual losses incurred by the FDIC during 1986-2000. To infer the

applicable tilt coefficient in the traded options markets we examine the prices of deep out-of-

the-money puts and calls on bank equity index (BKX) and estimate the implied risk neutral

distribution in this market. We also estimate the statistical Weibull distribution for the BKX

returns and infer the implied tilting coefficient in the options markets. We then risk-neutralize

the FDIC’s statistical loss distribution with the level of tilting implied in the BKX options market

by our derived tilt adjustment.
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As a check on our methodology, we compare our estimated reinsurance prices with those of

MMC Enterprise Risk (MMC). In a report submitted to the FDIC, MMC provides two rough

price estimates FDIC might have to pay to a private insurer to purchase a call-spread (MMC,

2001, p. 21). Our calculations show that MMC estimates are in the vicinity of our price-estimates

and thus reflect a risk neutral pricing rather than a statistical one. In another application of our

findings, we estimate that the FDIC needs to charge the banking system $3.1 billion in aggregate

insurance premium for loss coverage of $26.56 billion. This aggregate insurance cost represents

16.2 cents on $100 insured deposits at the level of $1.9 trillion insured deposits by the end of 2001.

Given the proximity of this estimate to the effective insurance premiums assessed by the FDIC,

we assert that FDIC is implicitly tilting the statistical distribution of its losses.

The paper is organized as follows. Section 2 presents the underlying framework for our

analysis. Section 3 derives the Weibull option pricing model and section 4 estimates the implied

risk aversion in the options market. Section 5 shows the application of reinsurance pricing. Section

6 concludes the paper.

2 Risk neutralization strategy

We recognize that the question of risk neutralizing a statistical distribution may not arise under

certain conditions. For example, in the case of catastrophic loss insurance, Cummins, Lewis, and

Phillips (1999), Froot (1996,1999), Cummins (1999), and Doherty (1997) argue that catastrophe

risks caused by natural disasters are uncorrelated with the market portfolio and hence no change

of measure is needed. In other words, prices of contingent claims on such risks equal statistically

expected payoffs discounted at the risk free rate. In contrast Atlan, Geman, Madan and Yor (2004)

recently show that merely being uncorrelated with the market portfolio may not be sufficient to

justify the absence of a change of probability for the risk in question. Our approach, by estimating

the tilt, accommodates a zero tilt as a special case.
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2.1 The Exponential Tilt

Our strategy for risk neutralizing a statistical loss distribution models the expectation of the

pricing kernel conditional on the risk at hand. We suppose that the quoted prices for claims of

this type are free of arbitrage. In general the no-arbitrage property is equivalent to prices being

equal to discounted expected payoffs under a change of probability from the statistical one to a new

probability measure termed the risk neutral probability (Harrison and Kreps, 1979). Somewhat

more formally, the price, w, of a claim to a state contingent cash flow c(ω) can be written as the

discounted at the risk-free rate of return, r, of the expected cash flow, where expectation is taken

at the risk-neutral measure, EQ

w = e−rEQ [c(ω)] (1)

Alternatively, the expectation can be taken at the statistical measure, EPas follows

w = e−rEP [Λ(ω)c(ω)] (2)

where Λ(ω) is the change of measure density. Conditioning on the level of the underlying risk, say

the loss level L we may write

w = e−rEP
£
EP [Λ(ω)|L] c(L)¤ (3)

where we suppose for simplicity that the claim is contingent only on the value of L. Defining by

g(L) = EP [Λ(ω)|L] (4)

we see that the market price for a claim is an expected value of the tilted cash flow, tilted by g(L).

Formally,

EQ[c(L)] = EP [g(L)c(L)],

and it follows that Z ∞
0

c(L)qL(L)dL =

Z ∞
0

c(L)g(L)pL(L)dL (5)
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where qL, pL are respectively the risk neutral and statistical densities of the loss level. Equation

(5) implies that

qL(L) = g(L)pL(L). (6)

Further, g is a positive function of the real valued variable L and the mixture of exponentials

is a spanning set of functions for all potential tilt functions g. For a local analysis of the behavior

in a part of the tail, the use of a single exponential is adequate. Hence, our approach to identify

qL(L) is to assume a statistical distribution for the historical loss levels, pL(L), and tilt this

statistical distribution by a loss exponential tilt coefficient, αL, and renormalizing it to obtain the

risk-neutral density as follows:

qL(L) =
eαLLR∞

0
eαLLpL(L)dL

pL(L) (7)

From an incomplete markets point of view the pricing kernel to be used is no longer uniquely

determined and is individual specific as well. As explained in Cummins, Lewis, and Phillips (1999)

the actuarial approach to pricing catastrophic insurance employs utility functions of risk averse

agents to construct the risk-neutralized density. For a specific connection between equation (7)

and utility theory the reader is referred to Appendix 8.1 that relates exponential tilts to a specific

utility function. The coefficient of exponential tilting can then be related to a constant absolute

risk aversion coefficient of an agent facing the losses.

The use of exponential tilts has a long history in finance. For one, it is now recognized that

Black-Merton-Scholes option pricing results from the application of an exponential tilt to the

underlying Brownian motion (Duffie, 1992). In the context of the Black-Merton-Scholes complete

markets model this exponential tilt is in fact the unique complete markets solution. The idea

has been subsequently used in a variety of incomplete markets contexts including Heston (1993),

where the risk in the Brownian motion driving the volatility is priced by exponential tilting.

More generally for a diffusion filtration it is well known (Karatzas and Shreve, 1991) that all

measure changes are locally exponential tilts of the underlying Brownian motions. The method
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has been employed in the term structure literature. (see for example, Heath, Jarrow, and Morton,

1992). In models with jumps, Naik and Lee (1990) use exponential tilts by employing constant

relative risk aversion utility functions. Furthermore, we note that in many insurance applications

risk-neutral and statistical distributions are related by what is called the Esscher transform that

exponentially tilts the statistical distribution to determine the risk neutral distribution (Esscher,

1932; Sondermann, 1991; Gerber and Shiu, 1996).

Our approach can also be related to the recent literature estimating the risk-neutral and

statistical densities to make inferences about the implied risk-aversion coefficients (see for example,

Jackwerth, 2000; Ait-Sahalia and Lo, 2000; Ait-Sahalia, Wang, and Yared, 2001; Coutant, 2001;

Bakshi, Kapadia, and Madan, 2003; Bliss and Panigirtzoglou, 2004). Collectively, this literature

focuses on the entire distribution of the underlying assets values. However, the contracts we

focus on have payouts in the tail of the statistical distribution. Hence, we add to this literature

by utilizing extreme value theory that characterizes the tail distributions of positive random

variables and estimate the tilting applicable to the tail events rather than the entire distribution

of the outcomes.

The risk neutralization strategy of equation (7) is completed on determining the exponential

tilt coefficient αL. We define the measure change density yL(L) by

yL(L) =
qL(L)

pL(L)
(8)

and note that for this risk neutralization we have

αL =
∂ ln (yL(L))

∂L
. (9)

2.2 Tilt coefficients for non-traded risks

We begin by noting that tilt coefficients are estimable for risks associated with liquid options

markets. An analysis of the time series for the risk at hand yields the statistical distribution while

from traded options we obtain the risk neutral density following Breeden and Litzenberger (1978).
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Given both densities, the tilt coefficient may be estimated by regression methods. This subsection

derives a relationship between tilts appropriate for non-traded risks and those observed in the

options markets.

We refer to the non-traded risk under study as the risk of loss level L. The objective is to tilt

the statistical loss distribution of the loss L and price a contract written on L. Let S denote the

level of some financial index with a liquid options market that is related to the loss risk, in the

sense that the conditional distribution of losses L given the index level S is nontrivial. Suppose

that the joint density of the loss level L and some financial index S, h(L, S), is such that the

conditional density of L given S, ψ(L|S), depends on S , i.e.

h(L, S) = pS(S)ψ(L|S) (10)

where pS(S) is the statistical density of the financial index S. The statistical density of the loss

level may then be computed as

pL(L) =

Z ∞
0

pS(S)ψ(L|S)dS. (11)

A change of probability on S to qS(S) induces a change on L by

qL(L) =

Z ∞
0

qS(S)ψ(L|S)dS. (12)

Here we have supposed that there is only a change of probability on S but no change in the

conditional law of L given S. Taking the ratio of (12) to (11) we observe that

yL(L) =

Z ∞
0

qS(S)

pS(S)

pS(S)ψ(L|S)R∞
0

pS(S)ψ(L|S)dS
dS (13)

=

Z ∞
0

yS(S)ψ(S|L)dS, (14)

where yS(S) is the statistical measure change density defined as

yS(S) =
qS(S)

pS(S)
. (15)

Observe that yL(L) is an average of yS(S) taken with respect to the conditional probability density
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ψ(S|L). By the mean value theorem, assuming continuity of yS , there exists a function

S = φ(L) (16)

such that Z ∞
0

yS(S)ψ(S|L)dS = yS(φ(L)). (17)

Equation (17) simply states that the change of measure density for loss levels is a weighted average

of the change of measure density for the financial index and hence equals the latter evaluated at

some level φ(L),

yL(L) = yS(φ(L)). (18)

The exponential tilt in L, given in equation (9) is measured by the logarithmic derivative of

yL(L) and we evaluate this as

∂

∂L
ln(yL(L)) = φ0(L)

∂

∂S
ln(yS(φ(L)) (19)

αL = φ0(L)αS . (20)

Hence the exponential tilt appropriate for the loss level is the options tilt (αS) computed at φ(L)

scaled by the sensitivity φ0(L).

2.3 Estimating αL

The exponential tilt coefficient for a non-traded risk, αL, is estimated in two stages. First, a simple

model for the measure change function yS(S) in the options market provides the estimate of αS .

Next, the tilt adjustment φ0 is obtained using a regressions model for the conditional distribution

of S given L. Hence, the tilt coefficient for loss levels is estimated using equation (20).

It is customary to employ out-of-the-money call and put options in inferring risk neutral

densities following Breeden and Litzenberger (1978), as these are the more liquid options. Hence

for strikes below the current spot one uses puts, while for strikes above the spot we use calls. On
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recovering yS(S) one may graph its logarithm against S and if this is linear across the entire range

of values for S the slope is the estimate for αS .

However, one typically observes a sharp nonlinearity such that yS(S) is U − shaped as is its

logarithm with a minimum near the level of the current spot (see for example Carr, Geman, Madan

and Yor (2002), or Jackwerth (2000). Hence the tilt coefficient is positive when S > S0 or for

out-of-the-money call options and negative for S < S0 or for out-of-the-money put options. Thus

we allow for this nonlinearity and entertain the simple measure change function

yS(S) = aP e
−αPS1S<S0 + aCe

αCS1S>S0 . (21)

where aP , aC are the tilt coefficients applicable to the put and call side respectively, which are

uniquely determined from the normalizing constant assuming continuity of yS at S0.

To determine the coefficients of exponential tilting αP and αC from the traded options market,

we can estimate p(S) from the time series of asset returns and q(S) from the prices of options that

are written on these assets. The implied tilting coefficients, αC and αP can be estimated from

the following regression:

log

µ
q(S)

p(S)

¶
= log (aC) + αCS + εC , S > S0 (22)

log

µ
q(S)

p(S)

¶
= log (aP )− αPS + εP , S < S0 (23)

where the error terms, εC and εP are deterministic errors of approximation in functional forms.

To estimate φ0(L), we determine φ(L) from equation (17) on first evaluating the expectation

of yS(S) given L. This computation requires a specification for the conditional density of S given

the loss level L. For this purpose we suppose the following simple regression model:

S = α+ βL+ ε (24)

with ε distributed normally with mean zero and a volatility of σε.

We substitute equation (24) into equation (21) for S and evaluate the conditional expectation

given L to get the left hand side of equation (17). However, we approximate by ignoring the shift
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in the functions on the put side or S < S0 for positive β and large L and likewise we ignore the

shift in the functions on the call side or S > S0 and negative β.

On this calculation we obtain the approximation for equation (13) and for positive β that

yS(φ(L)) = yL(L) ≈ eαC(α+βL)+
1
2α

2
Cσ

2
ε (25)

while for negative β we have

yS(φ(L)) = yL(L) ≈ e−αP (α+βL)+
1
2α

2
Pσ

2
ε (26)

Taking logarithmic derivatives of equations (25) and (26) we have that

αL = αCβ1β>0 + αP |β|1β<0. (27)

Comparing equation (27) with (20) we observe that tilt adjustment φ0(L) equals the absolute value

of the slope estimate from the regression equation (24).

3 Pricing an excess-of-loss reinsurance contract

This section illustrates the application of the foregoing discussion in the context of pricing an

excess-of-loss reinsurance contract. Such a contract is a portfolio of call options written on the

aggregate loss level, L, of the insurer. The first call option is written by the reinsurer on the

insurer’s aggregate loss level at a strike K. As the buyer of this call, the insurer incurs losses up

to K but receives from the reinsurer the loss amount L exceeding the strike K. However, the

reinsurer’s coverage of losses above the strike is not unlimited and payments are capped at K+B,

where B is the the stated coverage level. This condition implies that the insurer simultaneously

sells the reinsurer a call option struck at K + B. This second call caps the reinsurer’s payout at

the coverage level B. Taken together, this portfolio of two call options implies that the reinsurer

sells the insurer a call-spread.

For a coverage level of B the loss contingent payoff to the call-spread, CF (L), at year end can
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be expressed as:

CF (L) = Min (Max (L−K, 0) , B) (28)

= Max(L−K, 0)−Max(L− (K +B), 0)

The first call option in Equation (28) represents the call option the reinsurer sells the insurer

written on the insurer’s aggregate loss level, L, at a strike K. The second option ensures that the

reinsurer’s coverage of losses above the strike is capped at K +B.

Specifically, the price of this call-spread w, given an annual continuously compounded risk-free

interest rate of r is given by

w = λe−r
Z ∞
0

CF (L)q(L)dL. (29)

We assume that we are dealing with an aggregate pool of losses in which there is always some

payout annually and therefore that the statistical probability of a loss arrival, λ, is one. By the

equivalence of risk neutral probabilities to the underlying statistical probabilities it follows that

one may assume the risk neutral λ is also one.

To price the call spread, the reinsurer then just needs to identify a relevant risk-neutral prob-

ability distribution for annual loss levels, q(L). This density describes the current market price of

loss contingent bonds that pay one-dollar face in a year on the contingency that particular loss

levels are attained. We suppose that q(L) is not directly observable but p(L) is. Thus, our ap-

proach of risk-neutralizing the statistical distribution is applicable. However, before we continue

with the estimation of the tilt coefficient applicable to p(L) we adopt a specific extreme value

distribution for q(L) and obtain a closed form solution for equation (29).

3.1 The Weibull call option pricing model

The focus of any reinsurance contract is on the tail of this distribution of loss levels. Essentially,

the critical question is to have an adequate description of the tail behavior as the call spread
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contracts of interest have a zero payoff at low loss levels. For models of the tail we turn to extreme

value theory that characterizes the tail distributions of positive random variables like loss levels.

There are basically three parametric classes of distributions that characterize tail behavior.

These are the Frechet, Gumbell and Weibull (Embrechts, Kluppellberg, and Mikosch (1997)). We

note that of the three, the Weibull describes the limiting behavior of scaled maximal losses drawn

from random variables with an upper bound. In the present context the potential loss levels are

bounded above by the size of assets in place and hence such a distribution might be the right

choice. Indeed, Lucas, Llaassen, Spreij, and Straetmans (2001) use Weibull to describe extreme

tail behavior of credit losses in terms of portfolio characteristics. These considerations lead us to

proceed with the Weibull model as a candidate for the risk neutral density of losses q(L).

The specific functional form for the Weibull density, g(L; c, a) with parameters c and a is given

by

g(L; c, a) = exp

µ
−
µ
L

c

¶a¶
aLa−1

ca
(30)

with mean µ and standard deviation σ

µ = cΓ

µ
1 +

1

a

¶
(31)

σ = c

s
Γ

µ
1 +

2

a

¶
− Γ

µ
1 +

1

a

¶2
(32)

where Γ(x) is the gamma function.

The parameter c is a scaling parameter in units of dollars and a is called the shape parameter.

The value of a determines the relative fatness of the tail of the distribution, with higher values of

a leading to thinner tails. We see from Equations (31) and (32) that the coefficient of variation is

determined by the parameter a.

We next derive in Proposition 1 the closed-form expression for the price of the call option

(Max(L−X, 0) with strike X written on the loss level L , which is distributed Weibull.

Proposition 1 The value of the Weibull call option, with parameters c and a, written on the loss
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level L with strike X is given by

C = e−r [L∗W1 −XW2]

where L∗ = cΓ

µ
1 +

1

a

¶
(33)

W1 = 1− gammainc

µ³x
c

´a
, 1 +

1

a

¶
(34)

W2 = exp

µ
−
µ
X

c

¶a¶
(35)

and L∗is the expected loss level under the risk-neutral measure, Γ and gammainc are the

gamma and incomplete gamma functions.

Proof in the Appendix 8.2

We note the Weibull call option formula has a similar structure to the Black-Scholes option

pricing formula. The present value of the strike is multiplied by the Weibull risk neutral probability

that the call is in the money. L∗ is the risk neutral expected loss level and is multiplied by W1,

which is the probability of the call being in the money under a suitably adjusted measure. It follows

that a reinsurer can obtain the theoretical expression for the call-spread, given in Equation (29),

as the difference between the two call options with strikes K and K + B written on loss levels

that is Weibull distributed.

4 Weibull implied exponential tilt in the options market

The tilt in the options market is obtained by first constructing the statistical distribution of the

stock price at a maturity matching the option maturity. Second we estimate the risk neutral

distribution at a traded option maturity. To maintain consistency with our focus on pricing tail

events, we choose the Weibull as the functional forms for both these densities. Finally the tilt

follows on regressing the logarithm of the ratio of the two densities on the level of the stock price as

per equations (22) and (23). The details for the density estimations are explained in the following

two subsections.
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4.1 The statistical stock price density

The measure change function given in equation (21) allows for separate tilt coefficients for stock

prices below and above the current spot. We therefore study separately the statistical density on

these two sides. We focus attention on returns over a prespecified horizon and let S be the final

stock price while S0 denotes the initial stock price.

We define the excess return as a positive random variable with values in the interval [1,∞) by

letting

Ru =
S

S0
, S > S0 (36)

Rd =
S0
S
, S < S0. (37)

For such a positive random variable, bounded below by unity, the shifted Weibull distribution is

an appropriate extreme value density reflecting finite moments of all orders. For the statistical

density we suppose the density of Ru, Rd have the specific Weibull forms with parameters cSu , a
S
u

and cSd , a
S
d with the generic form

f(R) = exp

µ
−
µ
R− 1
c

¶a¶
a(R− 1)a−1

ca
(38)

We estimate from time series data on daily returns, using tail returns, the statistical parameters

for both the upside and downside by maximum likelihood.

For a comparison with the risk neutral density we have to construct statistical returns at the

option maturity from the estimated daily return distribution. However, in making a comparison

with risk neutral densities there is a horizon mismatch, as risk neutral densities are observed over

much longer horizons than a single day. One possibility is to construct long horizon returns from

daily returns using the hypothesis of identically and independently distributed returns (i.i.d.).

However, such a strategy is contrary to evidence on dependence in returns as demonstrated by

autocorrelations in squared returns (Engle, 1982).

We recognize, instead, that uncertainties pertaining to the distant future are rising as we move
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forward in time and employ instead a scaling hypothesis. Under this hypothesis we model the

return at a horizon of N days as having the distribution of
√
N times the daily return distribution,

or define the return over N days, RN to be in law

RN − 1 law
=
√
N(R− 1) (39)

The variance then grows linearly with N as it would were we to add independent and identically

distributed, but unlike the situation with addition of independent random variables, skewness and

excess kurtosis remain constant in N. For the case of adding i.i.d. variables, skewness falls like 1√
N

and excess kurtosis falls like 1
N as shown in Konikov and Madan (2002). In the sense of the higher

moments, the uncertainty is maintained at a higher level than would be the case with summing

independent and identically distributed random variables.1

Thus, it follows from equations (39) and (38) that the Weibull density for RN is

f(RN ) = exp

µ
−
µ
RN − 1
c
√
N

¶a¶
a(RN − 1)a−1
(c
√
N)a

(40)

and with parameters c
√
N, a.

4.2 The risk neutral stock price density

The risk neutral stock price density for upside and downside returns are also taken to be in

the Weibull family with parameters denoted by cRNu , aRNu and cRNd , aRNd respectively. These

parameters are to be estimated by calibrating the model prices developed under the specific

Weibull density to the prices of the out-of-the-money call and put options. For this task, following

Proposition 1, we develop the Weibull call option pricing formula for up and downside returns

using the Weibull density.

1 Alternatively, one may appeal to the work of Sato (1999) who shows that the class of all limit laws of arbitrarily
scaled sums of independent but not necessarily identical random variables are the laws at unit time of a scaled
process of independent and generally inhomogeneous increments. This observation makes such processes relevant to
the modeling of financial returns, that may easily be seen as the limit of the sum of a large number of independent
effects.
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For a call option of maturity t the call option value, cv,

cv = e−rt
Z ∞
K
S0

(S0R−K) exp

µ
−
µ
R− 1
c

¶a¶
a(R− 1)a−1

ca
dR. (41)

Note that in equation (41), we do not impose the condition that the discounted stock price is

the current stock price as we do not assert that the Weibull density applies for all levels of the

stock price, but only applies in the upper right tail where the specified calls are in the money.

Traditional option pricing models model the entire distribution of the underlying asset and hence

must enforce the spot forward arbitrage condition requiring that

S0e
rt =

Z ∞
0

Stq(St)dSt (42)

or that the financed stock purchase has a zero price. Since we focus on the Weibull model for

just the tail of the distribution, and use it to price out of the money calls and puts on the up and

down side, we do not have a condition integrating across the entire range of stock prices. In fact,

we impose no distributional hypothesis at all, in the center of the distribution, or the near money

density.

Performing the requisite integration we obtain that

cv = e−rt
·
S0

µ
P2 + cΓ

µ
1 +

1

a

¶
P1

¶
−KP2

¸
(43)

P2 = exp

Ã
−
Ã

K
S0
− 1
c

!a!
(44)

P1 = 1− gammainc

ÃÃ
K
S0
− 1
c

!a

, 1 +
1

a

!
(45)

We propose to estimate cRNu , aRNu using out-of-the-money calls struck at tail strikes trading in the

market.
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On the down side we have to evaluate the put option value pv,

pv = e−rt
Z ∞
S0
K

µ
K − S0

R

¶
exp

µ
−
µ
R− 1
c

¶a¶
a(R− 1)a−1

ca
dR (46)

= Ke−rt exp

Ã
−
Ã

S0
K − 1
c

!a!

−S0e−rt
Z ∞
S0
K

1

R
exp

µ
−
µ
(R− 1)

c

¶a¶
a(R− 1)a−1

ca
dR

The last integral is evaluated numerically. We estimate the parameters cRNd , aRNd using downside

tail strikes trading in the market.

5 Pricing the FDIC’s reinsurance risk

In 1991, the Federal Deposit Insurance Corporation Act authorized the Federal Deposit Insur-

ance Corporation (FDIC), “to obtain private reinsurance covering not more than 10 percent of

any loss the Corporation incurs with respect to an insured depository institution”(12U.S.C.A

1817(b)(1)(B)). Such authorization allows the FDIC to enter into financial contracts with the

private sector that price and share bank default risk. Recently, the Options Paper produced by

the FDIC (FDIC, 2000) view reinsurance as one way “to use market information to differentiate

risks without imposing a particular funding structure on insured institutions.”

Recently, the FDIC retained MMC Enterprise Risk (MMC) to determine the feasibility and

the costs of private sector reinsurance arrangements. In a report submitted to the FDIC, MMC

provides two rough price estimates for reinsuring the aggregate annual losses of the FDIC (MMC,

2001, p. 21). The specific estimates are such that the annual premium on a $2 billion coverage at

a one basis point (less than one chance in 10,000) risk level is $4 million. A second price estimate

states that the annual premium on a higher risk level of one percentage point (one chance in 100)

with $0.5 billion dollar coverage is $10 million.

We illustrate our methodology for risk neutralizing a statistical distribution by pricing the

claims quoted on by MMC. Additionally we price the aggregate loss distribution of the FDIC and

quote on the level of aggregate premiums required from the banking system as a whole.
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5.1 Statistical loss distribution on bank failures

Our focus is to capture the distribution of annual aggregate losses on bank failures covering the

period 1986-2000. The aggregate annual loss levels of the FDIC are displayed in Table 1. Although

we could increase sample observations by including years dating back to 1930s we find this manner

of expanding the sample undesirable because these dated periods are not reflective of risks faced

by the FDIC today. Given the relatively small sample size we estimate by the method of moments

the statistical parameters c and a.

From the sample mean µ and standard deviation σ of the FDIC’s annual loss experience we

invert for the shape parameter a the following:

1 +
σ2

µ2
=
Γ
¡
1 + 2

a

¢
Γ
¡
1 + 1

a

¢2 . (47)

Equation (47) is derived from Equations (31) and (32). The estimate for c follows from the

equation for the mean (31) given an estimate for a.

From Table 1 we observe that the annual mean and standard deviation of annual loss levels

between 1986-2000 is µ = $2.106 billion and σ = $2.497 billion, respectively. Substituting these

values in Equation (47) and using method of moments, we obtain the statistical parameters for

the Weibull distribution as c = 1.9317 and a = 0.8472.

5.2 Option tilts on the BKX Index

To approximate the appropriate tilt coefficient we assume that the reinsurer examines market risk

preferences on an asset that best reflects the aggregate bank risk. One proxy for such an asset

is the PHLX / KBW Bank Index (BKX). BKX is a capitalization-weighted index composed of

24 geographically diverse stocks representing national money center banks and leading regional

institutions. The index is evaluated annually by Keefe, Bruyette & Woods to assure that it

represents the banking industry. The index was initiated on October 21, 1991 and options started

trading on September 21, 1992.
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In measuring the degree of exponential tilting in the options market for the bank index, BKX

we must decide the region of strikes appropriate for relating these tilt coefficients to those of our

loss levels. As explained in equation (13) we need to assess the concentration of the conditional

density of the index given large loss levels. There are two effects to consider. First, it may be the

case that loss probabilities rise in a down market and this can bring larger losses associated with

a downward move in the index. Second, the magnitude of losses given default may be positively

related with the size of operations and this may be positively related to the level of the index or

equity.

We assess the degree of exponential tilting that occurs in pricing out-of-the-money equity call

and put options at the 1, 5, and 10 percent risk levels. We do this analysis by estimating the

statistical and risk neutral densities in the upper and lower tail of the returns, denoted by p(S),

and q(S) respectively, and estimate the regression equation given in equations (22) and (23) for

values of S in both tails of the statistical distribution.

We use time series data on the BKX for 1500 days ending on September 28, 2001 to obtain the

statistical distribution and data on index options for every second Wednesday of each month over

the year beginning in October 2000 and ending in September 2001 to estimate the risk-neutral

distribution. To estimate the statistical parameters of the Weibull density we first compute the

upside returns as described in the previous section. We sort these returns and extract the top

and bottom 25% of returns. The Weibull model is estimated by maximum likelihood on large

positive returns to yield the statistical parameters for the BKX index. The estimated parameters

are cSu = 0.0345, a
S
u = 2.5324 and cSd = 0.0335, a

S
d = 2.7593.

The risk neutral parameters are estimated by calibrating model prices (equations (43) and

(46)) to the call and put option prices with maturity of around two months with the five largest

and smallest strikes trading in the market for this maturity. The calibration is done for one day

in each month from October 2000 to September 2001. The results are presented in Table 2 for the

BKX index, where the average cRNu = 0.0645, aRNu = 0.9413 and cRNd = 0.0612, aRNd = 0.6824.
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Next, the regression equations (22) and (23) are estimated where the logarithm of the ratio

of the risk neutral density to the scaled statistical density regressed on the price level in the

range between 1% to 0.01% return levels in two months. The resulting slope coefficients are the

associated levels of exponential tilting on the upper and lower tail of the return distribution. The

results are presented in Table 3 along with the mean levels of tilting for the BKX. We observe

that the mean levels of tilting to losses on the upside in BKX is 0.1739, while the corresponding

figure for the downside is −0.6387.

5.3 Estimating the tilt adjustment

As described in section 2.3 tilts obtained from the options markets need to be adjusted before

they can be used to tilt the statistical loss distribution. The proposed tilt adjustment requires the

estimation of the regression equation (24).

To estimate the slope coefficients for the conditional distribution of the level of the index

given the loss level we regressed the NASDAQ bank index on the level of FDIC losses over the

period 1981 − 2001. The resulting regression for equation (24) yielded the result α = 1165.43,

β = −0.1698, with respective standard errors of 191.31, 0.0675 and an R2 of 28.76%.We therefore

employ in accordance with equation (27) the β scaled put side tilt and use αL = 0.6387∗0.1698 =

0.1085.Hence, we tilt the statistical distribution of the FDIC’s losses by this coefficient to obtain

the risk neutral distribution.

5.4 The value of the call-spread

We can price the call spread now by using the tilt coefficient of 0.1085 to tilt the statistical

distribution and obtain the risk-neutral distribution. We estimate the price of a call spread in the

context of a reinsurance quote estimate given to the FDIC. Although the strike levels are not

specifically indicated in the report we can easily estimate the implied strikes given the parameters

of the statistical Weibull density.
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Note that the probability of a loss amount exceeding the strike is given by

P (L > K) = θ = 1− F (K) (48)

For the Weibull cumulative distribution function,

F (K) = 1− exp
·
−
µ
L

c

¶a¸
(49)

equation (48) is written as

− log(θ) =
µ
K

c

¶a
(50)

Hence, the strike is expressed as

K = c (− log(θ)) 1a (51)

Substituting the estimates of c, a, and the risk level, θ, in equation (51) we obtain K1 = $11.72

billion and K2 = $26.56 billion for the high risk and low risk cases, respectively. We note that

these estimates of strike levels, implied by the quoted prices, can be considered reasonable because

they are well within the current $30 billion FDIC deposit insurance fund level.

To risk neutralize the statistical loss density of the FDIC we need to exponentially tilt it by the

level observed in the pricing of BKX put options scaled by the β coefficient of the regression (24),

0.1085.We recognize that exponentially tilted Weibull densities are not themselves in the Weibull

class. As an alternative approach, we alter the risk neutral density such that the derivative of the

logarithm of the risk neutral density accounts for the altered tilt. Specifically, using equation (7)

the estimated tilting is basically the difference between the derivative of the logarithm of the risk

neutral and statistical densities,

d log q(L)

dL
− d log p(L)

dL
= 0.1085

We evaluate the derivative of the logarithm of p at the two strikes of 11.72 and 26.56 to be

−.3638 and −.2871. This provides us two equations

d log q(L)

dL
|11.72 = −0.2553

d log q(L)

dL
|26.56 = −0.1786
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from which we can simultaneously solve for the parameters c and a of q(L) to obtain c = 1.0442

and a = 0.6054. Using these values for the risk neutral parameters we price the two call-spreads

to obtain the values

w(.01, .5) = 6, 157, 387

w(.0001, 2) = 1, 394, 000

These prices compared with those of the MMC estimates appear to indicate overpricing by MMC

to the order of approximately $4 million in each case.

We can place these estimates in perspective by pricing the call-spread statistically. In other

words, assuming risk neutrality we can use the statistical mean $2.106 billion and standard devi-

ation $2.497 billion as our working Weibull distribution and estimate the actuarially fair prices.

Under this assumption, using equation (33), the call-spread is valued statistically at $4.5 million

and $150, 000 for 1 % and 0.01 % risk levels, respectively. Note that the statistical prices establish

the lower bound for the reinsurance price risk. Thus, we observe that MMC estimates reflect some

level of tilting in pricing rather than assuming risk neutrality on the part of the reinsurer.

5.5 Pricing the aggregate coverage

The current assessment system used by the FDIC requires the FDIC to charge at least 23 cents

per $100 deposits if the mandated reserves to insured deposits, designated reserve ratio (DRR),

is below 1.25%. The Deposit Insurance Funds Act of 1996 prohibits the FDIC from assessing

depository institutions as long as DRR is above 1.25%. As of December 31, 2000, 92% of all

insured institutions were not paying premiums for deposit insurance (FDIC, 2001).

Our estimates of the FDIC’s risk neutral loss density can also be used to compute the aggre-

gate premium that should be collected from the insured institutions. If we accept the degree of

exponential tilting outlined above, then the risk neutral density for coverage up to $26.56 billion
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is:

q(L) =
e0.1085Lp(L : µ = 2.106, σ = 2.497)R 26.56

0
e0.1085Lp(L : µ = 2.106, σ = 2.497)dL

. (52)

Note that as the FDIC offers the random coverage level L each year then the aggregate premium

that should be collected at the 0.01% risk level from the insured institutions is the price of this

coverage and this is given in forward terms by:

Π =

Z 26.56

0

Lq(L)dL. (53)

For the specific risk neutral distribution given in equation (52), we compute this integral at

$3.096 billion. For the level of insured deposits around $1909.9 billion this is a premium of 16.21

cents per $100 deposits for the year 2001, which is quite comparable with the average deposit

insurance premium (19.44 cents per 100 dollars) charged by the FDIC in the period 1990-1995

when the insurance fund was below 1.25% of the insured deposits. In addition, this estimate of

the aggregate deposit insurance premium is in the vicinity of those of Cooperstein, Pennacchi,

and Redburn (1995), who estimate the fair premium to be in the range of 23.8 − 24.9 cents for

years 2000 and 2001.

Calculated statistically, the value of the integral in equation (53) is $2.1032 billion. This value

represents deposit insurance premiums of 11 cents per $100 deposits. In other words, we can assert

that the assessed deposit insurance premium is consistent with FDIC tilting the distribution of

its historical loss experience.

To ensure that the level of the fund is a risk neutral martingale, 16.21 cents premium should

be collected each year (assuming no change in statistical and the risk neutral distributions).

However, statistically, the fund will have a positive expected cash flow and it is therefore expected

to grow over time in line with the return commensurate with the insurance business it is engaged

in (Pennacchi, 2000). The question does arise as to who gets the expected return from this

activity. Although this questions begs in depth analysis, we can assert that if the fund is viewed

as mutually owned by the insured institutions then the growth may be transferred to them in the
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form of reduced premiums and this could be the logic underlying the decision to reduce premiums

to zero in certain growth situations.

6 Conclusion

This paper proposes a parsimonious approach to formulating a risk neutral distribution from an

estimated statistical distribution associated with an underlying uncertainty. As a result, contingent

claims on the uncertainty can be priced via the statistical density. To obtain the risk neutral

density we employ a renormalized exponential tilt of the statistical density, a method often used

in the literature. Our contribution lies in explicitly relating the level of this exponential tilt to

those observed in related options markets that serve as a sufficient statistic for the uncertainty at

hand.

More specifically, we focus attention on uncertainties related to tail loss events and develop

for the purpose, option pricing models using the Weibull extreme value distribution. These are

employed to obtain closed form expressions for reinsurance contract pricing. Our methods are

further illustrated by pricing the risks of reinsuring the FDIC’s losses.

24



7 References

Ait-Sahalia, Yacine and AndrewW. Lo, 2000, "Nonparametric Risk Management and Implied

Risk Aversion," Journal of Econometrics 94 (1-2), (January-February), 9-51

Ait-Sahalia, Yacine, Yubo Wang, and Francis Yared, 2001, "Do Option Markets Correctly

Price the Probabilities of Movement of the Underlying Asset?" Journal of Econometrics, 102 (1),

May, 67-110.

Bakshi, Gurdip, Nikunj Kapadia, and Dilip Madan, 2003, "Stock Return Characteristics, Skew

Laws, and Differential Pricing of Individual Equity Options," Review of Financial Studies, pp.

101-143.

Bliss, Robert R. and Nikolaos Panigirtzoglou, 2004, ”Option-Implied Risk Aversion Estimates:

Robustness and Patterns, Journal of Finance, Forthcoming.

Breeden, D. T. and R. H. Litzenberger (1978), “Prices of State Contingent Claims Implicit in

Option Prices,” Journal of Business, 51, 621-652.

Carr, P., H. Geman, D. Madan, and M. Yor. 2002, "The fine structure of asset returns: An

Empirical Investigation," Journal of Business, V 75 (2).

Cooperstein, R. L., G. Pennacchi, and F. S. Redburn. 1995. "The aggregate cost of deposit

insurance: A multiperiod analysis," Journal of Financial Intermediation, 4, 242-271.

Coutant, Sophie, 2001, "Implied Risk Aversion in Options Prices," in Information Content in

Option Prices: Underlying Asset Risk-Neutral Density Estimation and Applications, Ph.D. thesis,

University of Paris IX Dauphine.

Cummins, J. David, Georges Dionne, James B. McDonald, and Michael Prichett, 1990. "Appli-

cations of the GB2 family of distributions in modelling insurance loss processes," Insurance:Mathematics

and Economics 9, pp. 257-272.

25



Cummins, J. David, Christopher M. Lewis, and Richard D. Phillips, 1999. "Pricing excess-loss

reinsurance contracts against catastrophic loss," in Kenneth Froot, ed., Financing Catastrophic

Risk, Chicago: University of Chicago Press.

Doherty, Neil A., 1997, Financial Innovation in the Management of Catastrophe Risk, Journal

of Applied Corporate Finance 10 (3), (Fall), 84-95.

Duffie, D., 1992. Dynamic Asset Pricing Theory. Princeton University Press, Princeton, New

Jersey.

Duffie, D., R. Jarrow, A. Purnanandam, and Wei Yang. 2003. "Market pricing of deposit

insurance," Journal of Financial Services Research, forthcoming.

Embrechts, P., C. Kluppelberg, and T. Mikosch, 1997,Modeling Extremal Events, Volume 33 of

Applications of Mathematics; Stochastic Modelling and Applied Probability. Heidelberg: Springer

Verlag.

Engle, R. (1982), “Autoregressive Conditional Heteroskedasticity with Estimates of the Vari-

ance of U.K. Inflation,”Econometrica, 50, 987-1008.

Esscher, F., 1932, On the probability function in the collective theory of risk, Skandinavisk

Aktuarietidskrift 15, 175-195

Federal Deposit Insurance Corporation, Failed Bank Cost Analysis 1986-2000, Division of

Finance

Federal Deposit Insurance Corporation, August 2000, Options Paper

Federal Deposit Insurance Corporation, April 2001, Keeping the Promise: Recommendations

for Deposit Insurance Reform.

26



Froot, Kenneth A. and Paul G. J. O’Connell, 1996, "On the pricing of intermediated risks: The-

ory and application to catastrophe reinsurance," in Kenneth Froot, ed., Financing Catastrophic

Risk, Chicago: University of Chicago Press.

Gerber, H. U. and E. S. W. Shiu, 1996, Actuarial bridges to dynamic hedging and option

pricing, Insurance: Mathematics and Economics, 18, 183-218.

Harrison, M. and D. Kreps, 1979, Martingales and arbitrage in multiperiod security markets,

Journal of Economic Theory, 20, 381-408.

Heath, D., R. Jarrow, and A. Morton. 1992. Bond pricing and the term structure of interest

rates: A new methodology for contingent claim valuation, Econometrica 60, 77-105.

Heston, S. L., 1993. A closed-form solution for options with stochastic volatility with applica-

tions to bond and currency options. Review of Financial Studies 6, 327-43.

Jackwerth, Jens Carsten, 2000, ”Recovering Risk Aversion from Option Prices and Realized

Returns,” Review of Financial Studies, 13 (2), (Summer), 433-467.

Karatzas, I., S. E. Shreve. 1991. Brownian Motion and Stochastic Calculus, Second Edition.

Springer-Verlag, New York.

Konikov, Mikhail and Dilip Madan, 2002, "Option Pricing Using Variance-Gamma Markov

Chains," Review of Derivatives Research, 5, 81-115.

Lucas, Andrea, Pieter Llaassen, Peter Spreij, and Stefan Straetmans, 2001, Tail behavior of

credit loss distributions for general latent factor models, Working Paper, University of Amsterdam.

Madan, Dilip and Haluk Unal, 2003, Loss distributions in bank failures, Working Paper,

University of Maryland.

27



Mayers, David and Clifford W. Smith, Jr. 1990. "On the corporate demand for insurance:

Evidence from the reinsurance market," Journal of Business 63:1, pp. 19-39

MMC Enterprise Risk, December 2001,Reinsurance Feasibility Study, Federal Deposit Insur-

ance Corporation, .

Moore, James F. Tail estimation and catastrophe security pricing: Can we tell what target

we hit if we are shooting in the dark?, Working Paper, Wharton Financial Institutions Center,

1999-14.

Naik, V. and M. Lee, 1990. General equilibrium pricing of options on the market portfolio

with discontinous returns, Review of Financial Studies 3, 493-522.

Pennacchi, George, 2000, The effects of setting deposit insurance premiums to target insurance

fund reserves, Journal of Financial Services Research, 17:1, 153-180.

Sato, Ken-Iti, 1991, Self similar Processes with Independent Increments, Probability Theory

and Related Fields 89, 285-3000.

Sondermann, D., 1991, Reinsurance in arbitrage-free markets, Insurance: Mathematics and

Economics, 10, 191-202

28



8 Appendix

8.1 A utility based derivation of the relation between q(L) and p(L).

The expected utility of an agent absorbing the loss payment L is given by

u = E [U(W − L)] (54)

=

Z
W,L

U(W − L)f(W )λ(W )g(L|W )dWdL

.......+

Z
W

U(W )f(W ) (1− λ(W )) dW. (55)

The agent’s utility of the end of period wealth,W, with marginal distribution, f(W ), in the absence

of a loss, L, is U(W ). This state has a probability of (1− λ(W )) where, λ(W ) =
R∞
0

p(W,L)dL

is the probability of a loss given the end of period no loss wealth of W.Here, p(W,L) is the joint

density for a loss level L. Hence, with λ(W ) probability, the agent is exposed to losses and his

utility is U(W − L).In this case, the conditional density of loss is given by g(L|W ) = p(W,L)
λ(W ) .

Now suppose that the loss level is independent of the end of period no loss wealth level and

that

g(L|W ) = p(L) (56)

the unconditional density of loss given the existence of a loss. Also suppose that λ(W ) = λ a

constant. We may then write

u =

Z
W,L

U(W − L)f(W )λp(L)dWdL+

Z
W

(1− λ)U(W )f(W )dW. (57)

Suppose now that the agent is offered a contingent claim paying c(L) at the end of the period.

If the agent were to take a position of t units in this claim at the fair forward price of a dollars

then the expected utility of the agent can be expressed as:

V (t) =

Z
W,L

U(W − L+ tc(L)− ta)f(W )λp(L)dLdW

....+

Z
W

(1− λ)U(W − ta)f(W )dW (58)
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Because the claim is fairly priced, we have that V 0(0) = 0. Evaluating V 0(t) we get

V 0(t) =

Z
W,L

U 0(W − L+ tc(L)− ta)f(W )λp(L)(c(L)− a)dLdW (59)

−a
Z
W

(1− λ)U 0(W − ta)f(W )dW (60)

Equating V 0(0) to 0 we get

Z
W,L

U 0(W − L)f(W )λp(L)c(L)dLdW

= a

Z
W,L

U 0(W − L)f(W )λp(L)dLdW

+a

Z
W

(1− λ)U 0(W )f(W )dW (61)

It follows that the fair forward price, a, of the contingent claim is:

a =

R
W,L

U 0(W − L)f(W )λp(L)c(L)dLdWR
W,L

U 0(W − L)f(W )λp(L)dLdW

1

1 + b
(62)

where,

b =

R
W
(1− λ)U 0(W )f(W )dWR

W,L
U 0(W − L)f(W )λp(L)dLdW

(63)

Define

q(L) =

R
W
U 0(W − L)f(W )λp(L)dWR

W,L
U 0(W − L)f(W )λp(L)dLdW

(64)

then we can write:

a =

Z
L

q(L)c(L)
1

1 + b
dL (65)

Equation (65) shows that, q(L) is the risk neutral density for a loss level of L, given the

existence of a loss while (1+ b)−1 is the risk neutral probability of a loss. Hence, we can establish

the relation between statistical, p(L), and.risk neutral, q(L), probability distributions, assuming

a specific utility function. For the case of an exponential marginal utility or the case of constant

absolute risk aversion, α,

U 0(W ) = exp(−αW ) (66)
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equation (64) is written as

q(L) =

R
W
exp−α(W − L)f(W )λp(L)dWR

W,L
exp−α(W − L)f(W )λp(L)dLdW

simplifying we obtain:

q(L) =
eαLp(L)R∞

0
eαLp(L)dL

(67)

Note that if U 0 is constant and utility is linear then b = (1− λ)/λ and (1 + b)−1 = λ , which

is the statistical probability of a loss. More generally we expect U 0(W − L) > U 0(W ) so b should

be less than (1− λ)/λ and (1 + b)−1 is greater than λ. Hence the presence of risk aversion raises

the risk neutral loss probability over its statistical counterpart.

For the aggregate system we suppose that λ = 1 and there is some loss each year and hence

the equation for pricing loss contingent claims in the spot market is

e−ra = e−r
Z ∞
0

q(L)c(L)dL

where risk neutralization occurs in accordance with equation (67).

8.2 Proof of Proposition 1: Derivation of the Weibull call option model

Note that for strike X we can express the payoff to a call option written on the loss level L as

follows:

C(X) =

∞Z
X

(L−X) f(L)dL, (68)

where the Weibull probability density function is given by

f(L) = exp

µ
−
µ
L

c

¶a¶
aLa−1

ca
. (69)

Hence, equation (68) can be written as,

C(X) =

∞Z
X

L exp

µ
−
µ
L

c

¶a¶
aLa−1

ca
dL−X exp

µ
−
µ
X

c

¶a¶
. (70)

The first term is simplified as follows:

∞Z
X

L exp

µ
−
µ
L

c

¶a¶
aLa−1

ca
dL =

a

ca

∞Z
X

La exp

µ
−
µ
L

c

¶a¶
dL (71)
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Letting u =
¡
L
c

¢a
, y = cu

1
a , and dy = c

au
1
a−1, we have

=
a

ca

∞Z
(Xc )

a

cau (exp (−u)) c
a
u
1
a−1du, (72)

= c

∞Z
(Xc )

a

u
1
a (exp (−u)) du (73)

= c

∞Z
0

u
1
a (exp (−u)) du− c

(Xc )
aZ

0

u
1
a (exp (−u)) du (74)

= cΓ

µ
1 +

1

a

¶
− cΓ

µ
1 +

1

a

¶
(Xc )

aZ
0

u
1
a (exp (−u)) du

Γ
¡
1 + 1

a

¢ (75)

Noting that,

gammainc(w, γ) =

wZ
0

uγ−1 (exp (−u)) du

Γ(γ)
. (76)

and substituting equation (75) in equation (70) and discounting it at the risk-free rate of r,

we have

C = e−r
·
cΓ

µ
1 +

1

a

¶µ
1− gammainc

µ³x
c

´a
, 1 +

1

a

¶¸
(77)

− X exp

µ
−
µ
X

c

¶a¶¶¸
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TABLE 1: FDIC Annual Loss Levels

Source: Failed Bank Cost Analysis, 1986-2000, Division of Finance, FDIC

Year Loss (in $Billions) Number of Bank Failures

1986 1.775 145

1987 2.023 203

1988 6.921 280

1989 6.199 207

1990 2.785 169

1991 6.148 127

1992 3.675 122

1993 0.646 41

1994 0.179 13

1995 0.085 6

1996 0.038 5

1997 0.005 1

1998 0.234 3

1999 0.841 7

2000 0.039 6
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TABLE 2: Risk-neutral Weibull parameter estimates on extreme 2-month BKX

call and put options.

Date maturity cdrn adrn curn aurn

Oct. 2000 .1804 0.0563 0.6465 0.0821 1.1453

Nov. 2000 .1968 0.0627 0.7004 0.0176 0.4245

Dec. 2000 .1779 0.0636 0.6932 0.0272 0.5128

Jan. 2001 .1781 0.0665 0.6701 0.0540 0.6997

Feb. 2001 .1779 0.0527 0.6749 0.0659 0.9728

Mar. 2001 .1779 0.0342 0.4549 0.0914 1.0725

Apr. 2001 .1753 0.0736 0.6703 0.0867 0.9985

May 2001 .1945 0.0632 0.7057 0.0680 0.9862

Jun. 2001 .1753 0.0365 0.6122 0.0524 1.0211

Jul. 2001 .1945 0.0538 0.6794 0.0734 1.1855

Aug. 2001 .1917 0.0406 0.6049 0.0637 1.1206

Sep. 2001 .1563 0.1303 1.0758 0.0913 1.1556

Mean Level .1814 0.0612 0.6824 0.0645 0.9413
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Table 3. Exponential tilt coefficients for out-of-the-money put and call options on

the BKX index

Date Maturity Put Options Call Options

Oct. 2000 0.1804 -0.6403 0.1348

Nov. 2000 0.1968 -0.6183 0.2533

Dec. 2000 0.1779 -0.6392 0.2588

Jan. 2001 0.1781 -0.6498 0.2415

Feb. 2001 0.1779 -0.6298 0.1747

Mar. 2001 0.1779 -0.6846 0.1841

Apr. 2001 0.1753 -0.6597 0.2026

May 2001 0.1945 -0.6177 0.1596

Jun. 2001 0.1753 -0.6292 0.1135

Jul. 2001 0.1945 -0.6138 0.0732

Aug. 2001 0.1917 -0.6608 0.1152

Sep. 2001 0.1563 -0.6216 0.1763

Mean Level 0.1814 -0.6387 0.1739
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